A Simple Primal-Dual Feasible Interior-Point Method for Nonlinear Programming with Monotone Descent
نویسندگان
چکیده
We propose and analyze a primal-dual interior point method of the “feasible” type, with the additional property that the objective function decreases at each iteration. A distinctive feature of the method is the use of different barrier parameter values for each constraint, with the purpose of better steering the constructed sequence away from non-KKT stationary points. Assets of the proposed scheme include relative simplicity of the algorithm and of the convergence analysis, strong global and local convergence properties, and good performance in preliminary tests. In addition, the initial point is allowed to lie on the boundary of the feasible set. ∗This work was supported in part by the National Science Foundation under Grant DMI9813057.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملA Robust Primal-Dual Interior-Point Algorithm for Nonlinear Programs
We present a primal-dual interior point algorithm of line-search type for nonlinear programs, which uses a new decomposition scheme of sequential quadratic programming. The algorithm can circumvent the convergence difficulties of some existing interior point methods. Global convergence properties are derived without assuming regularity conditions. The penalty parameter ρ in the merit function i...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملInterior-point Methods for Nonconvex Nonlinear Programming: Primal-dual Methods and Cubic Regularization
In this paper, we present a primal-dual interior-point method for solving nonlinear programming problems. It employs a Levenberg-Marquardt (LM) perturbation to the Karush-Kuhn-Tucker (KKT) matrix to handle indefinite Hessians and a line search to obtain sufficient descent at each iteration. We show that the LM perturbation is equivalent to replacing the Newton step by a cubic regularization ste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003